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Abstract—As it is known, there have been a number of attempts
to obtain precise estimates for the number of primes not exceeding
x. A lot of them are related to the ones done by Chebyshev. Thus,
a good deal is known about them and their limitations. The truth,
or otherwise, of the Riemann hypothesis, however, has still not been
established. In this paper we derive a prime geodesic theorem for a
compact Riemann surface regarded as a quotient of the upper half-
plane by a discontinuous group. We assume that the surface at case,
considered as a compact Riemannian manifold, is equipped with
classical Poincare metric. Our result follows from the standard theory
of the zeta functions of Selberg and Ruelle. The closed geodesics
in this setting are in one-to-one correspondence with the conjugacy
classes of the corresponding group, so analysis conducted here is
reminiscent of the relationship between the distribution of rational
primes and Riemann zeta function. By analogy with the classical
arithmetic case and the fact that the Riemann hypothesis is true
in our setting, one would certainly expect to obtain an analogous
error term in the prime geodesic theorem. Bearing in mind that the
corresponding Selberg zeta funcion has much more zeros than the
Riemann zeta, the latter is not satisfied however.
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I. INTRODUCTION

THE positive integers other than 1 may be divided into two
classes: prime numbers (which do not admit of resolution

into smaller factors), and composite ones which do.
We shall denote by π (x) the number of primes not exceed-

ing x.
The statement

π (x)
x

log x

→ 1

as x → ∞, is known as the prime number theorem and
represents the central theorem in the theory of the distribution
of primes. It is known that the problem of deciding its truth or
falsehood captured particular attention of mathematicians for
almost a hundred of years.

Any generalization of the prime number theorem to the
more general situations is known as a prime geodesic theorem.

Almost all generalized papers treat the case of hyperbolic
Riemann surfaces (see e.g., [14], [19]).

Gangolli [8] (see also, [7], [22]) and DeGeorge [4] inde-
pendently proved that

πΓ (x)
xd−1

(d−1) log x

→ 1
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as x → ∞, for compact, d-dimensional locally symmetric
spaces of real rank one, where πΓ (x) is the correspond-
ing counting function, i.e., a yes function counting prime
geodesics of the length not larger than log x.

The same prime geodesic theorem was derived by Gangolli-
Warner [9] when the underlying locally symmetric space is not
necessarily compact but has a finite volume.

The first refinement of such prime geodesic theorem (in the
case of non-compact, real hyperbolic manifolds with cusps)
was given by [18] (see, [17] for a related work). Later, it was
further improved by Avdispahić-Gušić [1].

In the case of compact hyperbolic Riemann surfaces (Γ is
a co-finite discrete subgroup of PSL (2,R)), prime geodesic
theorem with error terms is given by

πΓ (x) =
∑

3
4<sn≤1

li (xsn) +O
(
x

3
4 (log x)

α
)

as x → ∞, where sn is a zero of the corresponding Selberg
zeta function, and α = − 1

2 [14] (α = −1 [19]).
Note that there have been many works: Iwaniec [15], Luo-

Sarnak [16], Cai [3], Soundararajan-Young [21], to achieve
better error terms for a specific arithmetic discrete subgroup
Γ ⊆ PSL (2,R).

In the case of compact, locally symmetric spaces of real
rank one, the best known error term in the prime geodesic
theorem was given by Avdispahić-Gušić [2] (see also, [10],
[13], [12]).

In this paper we pay our particular attention to the case of
compact hyperbolic Riemann surfaces, and the corresponding
prime geodesic theorem.

II. PRELIMINARIES

Let Ω be a compact Riemann surface, regarded as a quotient
of the upper half-plane H+ by a discontinuous group Γ.

We assume that H+ is equipped with the metric
y−2

(
(dx)

2
+ (dy)

2
)

.
Denote by A the volume of Ω.
As it is known, an element γ ∈ Γ, γ 6= 1 can be put into

normal form z → N (γ) z, with N (γ) > 1.
The number N (γ) is the same within a conjugacy class,

and is called the norm of the element.
Thus, l (γ) = logN (γ) is the length of the closed geodesic

corresponding to the conjugacy class of γ.
Recall that a closed geodesic is called primitive if it is not

a positive integral power of any geodesic other than itself.
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Consequently, we define Λ (γ) to be logN (γ0), where γ =
γn0 , and γ0 is primitive.

Let g be the genus of Ω.
We assume that g ≥ 2.
It is understood that Γ ⊆ PSL (2,R).
The Gaussian curvature of Ω is −1.
Let Γh resp. PΓh denote the set of the Γ-conjugacy classes

of hyperbolic resp. primitive hyperbolic elements in Γ.
The Selberg zeta function is defined by (see, e.g., [20, p. 8],

[14, p. 72])

Z (s) =
∏

γ0∈PΓh

+∞∏
k=0

(
1− e−(s+k)l(γ0)

)
,

Re (s) > 1.
By [14, p. 72, Th. 4.10.]:
Z (s) is an entire function,
Z (s) has trivial zeros s = −k, k ≥ 1 with multiplicities

(2g − 2) (2k + 1),
s = 0 is a zero of multiplicity 2g − 1,
s = 1 is a zero of multiplicity 1,
the non-trivial zeros of Z (s) are located at 1

2 ± i rn.
More precisely, the zeros in the critical strip 0 < Re (s) <

1 are located at points which are solutions of the equations
s (1− s) = λn, where λn runs through the sequence of
eigenvalues (omitting λ0 = 0) for the problem ∆f + λf = 0
on Ω, where ∆ is the Laplace operator on Ω.

Thus, the numbers rn are normalized by the condition
Arg (rn) ∈

{
0,−π2

}
, so the non-trivial zeros are located

precisely at the points

sn =
1

2
+ i rn,

s̃n =
1

2
− i rn.

Hence, apart from a finite number of exceptional zeros s0,
s̃0,..., sM , s̃M concentrated along [0, 1], the non-trivial zeros
of Z (s) all lie on the line Re (s) = 1

2 (the Riemann hypothesis
is true for Z (s)).

Let πΓ (x) be the number of prime geodesics over Ω, whose
length is not larger then log x.

In [19], the author derived a prime goedesic theorem for
compact Riemann surfaces.

The main purpose of this paper is to give yet another proof
of the same theorem (with the same error terms) by using
different means.

Note that one may interpret l (γ) as the period of a periodic
orbit for the geodesic flow on Ω.

This suggests defining a zeta function by

ZR (s) =
∏
γ∈P

(
1− e−sτ(γ)

)−1

,

where P is the set of periodic orbits, and τ (γ) is the period
of γ.

In our setting, this zeta function reads as

ZR (s) =
∏

γ0∈PΓh

(
1− e−sl(γ0)

)−1

,

Re (s) > 1, and is called the Ruelle zeta function.
Define N (t) to be the number of zeros of Z (s) on the

critical line on the interval 1
2 + ix, with 0 < x ≤ t.

III. PRELIMINARY RESULTS

The following results will be applied in the sequel.

Theorem 1. [14, p. 81, Th. 4.25.] Z (s) is an entire function
of order 2.

Theorem 2. [6, p. 509, Prop. 7.] Suppose Z (s) is the ratio
of two nonzero entire functions of order at most n. Then, there
is a D > 0 such that for arbitrarily large choices of r

∫
r

∣∣∣∣∣Z
′
(s)

Z (s)

∣∣∣∣∣ |ds| ≤ Drn log r.

Theorem 3. [14, p. 102, Th. 6.4.] Let s = σ + iT , where
−1 ≤ σ ≤ 2, and T 6= rn for all rn. Then,

Z
′
(s)

Z (s)
= O (T ) +

∑
|rn−T |≤1

1

s− 1
2 − i rn

.

Theorem 4. [14, p. 102, Prop. 6.6.] Suppose that 0 < ε <
1, s = σ + i t, t ≥ 1000. Then,

Z
′
(s)

Z (s)
= O

(
ε−1t

)
for σ ≥ 1

2 + ε.

IV. MAIN RESULT

The following theorem is the main result of this paper.

Theorem 5. Let Ω be as above. Then,

πΓ (x) = li (x) +
M∑
n=1

li (xsn) +O
(
x

3
4 (log x)

−1
)

as x → ∞, where sk ∈ [0, 1], k ∈ {1, 2, ...,M} is a zero of
the corresponding Selberg zeta function Z (s).

Proof: Suppose that k ≥ 2 is an integer.
Let x > 1, and c > 2 · 1

2 = 1.
We define,

ψ0 (x) =
∑

N(γ)≤x

Λ (γ) ,

ψj (x) =

∫ x

0

ψj−1 (t) dt,

where j = 1, 2,... .
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As it is known,

ψj (x) = (j!)
−1

∑
N(γ)≤x

Λ (γ) (x−N (γ))
j
.

Furthermore, by [19, p. 244],

1

2π i

c+i∞∫
c−i∞

Z
′
(s)

Z (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xsds

=
1

k!

∑
N(γ)≤x

Λ (γ)

(
1− N (γ)

x

)k
+

1

2π i

c+i∞∫
c−i∞

Z
′
(s+ 1)

Z (s+ 1)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xsds.

Hence,

1

2π i

c+i∞∫
c−i∞

Z
′
(s)

Z (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds−

1

2π i

c+i∞∫
c−i∞

Z
′
(s+ 1)

Z (s+ 1)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds.

= (k!)
−1

∑
N(γ)≤x

Λ (γ) (x−N (γ))
k

=ψk (x) .

As already noted (see, [20, p. 9]),

ZR (s) =
Z (s+ 1)

Z (s)
. (1)

Hence,

Z
′
(s)

Z (s)
− Z

′
(s+ 1)

Z (s+ 1)
= −Z

′

R (s)

ZR (s)
. (2)

Consequently,

1

2π i

c+i∞∫
c−i∞

−Z
′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds

=ψk (x) .

Let T1 � 0 be arbitrary number.
Following [19, p. 243], we consider the segment of the

critical line 1
2 + i t, with T1 − 1 < t ≤ T1 + 1.

Applying the Dirichlet principle, we obtain that there exists
a 1

2 + i T̃ in the segment whose distance from any root of
Z (s) is greater than C1

T̃
, for some fixed C1 > 0.

Thus, ∣∣∣∣12 + i T̃ − α
∣∣∣∣ > C1

T̃
(3)

for α ∈ SSel, where SSel is the set of zeros of the Selberg
zeta function Z (s).

We put

R (T )

=

{
s ∈ C : |s| ≤ T,Re (s) ≤ 1

2

}
∪{

s ∈ C :
1

2
≤ Re (s) ≤ c,−T̃ ≤ Im (s) ≤ T̃

}
,

where T =
√
T̃ 2 + 1

4 .

Bearing in mind the choice of the value T̃ , and the location
of the zeros of Z (s), we conclude that no pole of

−Z
′

R (s)

ZR (s)
s−1 (s+ 1)

−1
... (s+ k)

−1
xs+k

occurs on the square part of the boundary of R (T ).
Furthermore, we may, without loss of generality, assume

that no pole of

−Z
′

R (s)

ZR (s)
s−1 (s+ 1)

−1
... (s+ k)

−1
xs+k

occurs on the circular part of the boundary of R (T ) (see, e.g.,
[18, p. 98]).

Now, we are in position to apply the Cauchy integral
formula to the integrand of ψk (x) over R (T ), to obtain

∫
R(T )+

−Z
′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds

=2π i
∑

z∈R(T )

Ress=z

(
− Z

′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+k

)
,

where R (T )
+ denotes the boundary of R (T ) with the anti-

clockwise orientation.
Therefore,

1

2π i

c+i T̃∫
c−i T̃

−Z
′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds

(4)
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=
∑

z∈R(T )

Ress=z

(
− Z

′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+k

)
−

1

2π i

∫
CT

−Z
′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds+

1

2π i

1
2 +δ+i T̃∫
1
2 +i T̃

−Z
′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds+

1

2π i

1
2−i T̃∫

1
2 +δ−i T̃

−Z
′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds+

1

2π i

c+i T̃∫
1
2 +δ+i T̃

−Z
′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds+

1

2π i

1
2 +δ−i T̃∫
c−i T̃

−Z
′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds,

where CT is the circular part of R (T )
+.

By [19, p. 242, Lemma 1],

Z
′
(s)

Z (s)
=
∑
γ∈Γh

Λ (γ)N (γ)
−s

+
Z
′
(s+ 1)

Z (s+ 1)

for Re (s) > 1.

Therefore, Z
′
R(s)

ZR(s) is bounded in any half-plane of the form
Re (s) > 1 + ε.

Since

ψk (x)

=
1

2π i

c+i T̃∫
c−i T̃

−Z
′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds+

(5)

1

2π i

c+i∞∫
c+i T̃

−Z
′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds+

1

2π i

c−i T̃∫
c−i∞

−Z
′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds,

we estimate

1

2π i

c+i∞∫
c+i T̃

−Z
′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds

=O

xc+k +∞∫
T̃

dt

tk+1

 = O
(
xc+kT̃−k

)
.

(6)

Similarly,

1

2π i

c−i T̃∫
c−i∞

−Z
′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds

=O
(
xc+kT̃−k

)
.

(7)

Combining (4)-(7), we obtain

ψk (x)−O
(
xc+kT̃−k

)
=

∑
z∈R(T )

Ress=z

(
− Z

′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+k

)
−

1

2π i

∫
CT

−Z
′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds+

1

2π i

1
2 +δ+i T̃∫
1
2 +i T̃

−Z
′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds+

1

2π i

1
2−i T̃∫

1
2 +δ−i T̃

−Z
′

R (s)

ZR (s)
×

(8)
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× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds+

1

2π i

c+i T̃∫
1
2 +δ+i T̃

−Z
′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds+

1

2π i

1
2 +δ−i T̃∫
c−i T̃

−Z
′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds.

Now, we estimate the integrals on the right hand side of (8).
By (1) and Theorem 1, a meromorphic extension over C

of the Ruelle zeta function ZR (s) is a quotient of two entire
functions of order 2 over C.

Thus, by Theorem 2,

1

2π i

∫
CT

−Z
′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds

=O

x 1
2 +kT−k−1

∫
CT

∣∣∣∣∣Z
′

R (s)

ZR (s)

∣∣∣∣∣ |ds|


=O

x 1
2 +kT−k−1

∫
|s|=T

∣∣∣∣∣Z
′

R (s)

ZR (s)

∣∣∣∣∣ |ds|


=O
(
x

1
2 +kT−k+1 log T

)
.

(9)

By Theorem 3 and (2), we obtain that for s = σ1 + i T̃ , 1
2

≤ σ1 ≤ 1
2 + δ,

−Z
′

R (s)

ZR (s)
=
Z
′
(s)

Z (s)
− Z

′
(s+ 1)

Z (s+ 1)

=O
(
T̃
)

+
∑

|T̃−rn|≤1

1

s− 1
2 − i rn

−

Z
′
(s+ 1)

Z (s+ 1)
.

Since Z
′
(s+1)

Z(s+1) is bounded for s = σ1 + i T̃ , 1
2 ≤ σ1 ≤ 1

2

+ δ, N (t) = A
4π t

2 + O (t), and (3) holds true, we estimate

− Z
′

R (s)

ZR (s)

=O
(
T̃
)

+
∑

|T̃−rn|≤1

1

s− 1
2 − i rn

+O (1)

=O
(
T̃
)

+O

 ∑
|T̃−rn|≤1

1∣∣∣ 12 + i T̃ − 1
2 − i rn

∣∣∣


=O
(
T̃
)

+O

T̃ ∑
|T̃−rn|≤1

1


=O

(
T̃
)

+O
(
T̃ 2
)

= O
(
T̃ 2
)

= O
(
T 2
)

for s = σ1 + i T̃ , 1
2 ≤ σ1 ≤ 1

2 + δ.
Thus,

1

2π i

1
2 +δ+i T̃∫
1
2 +i T̃

−Z
′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds

=O
(
x

1
2 +δ+kT−k+1

)
.

(10)

Similarly,

1

2π i

1
2−i T̃∫

1
2 +δ−i T̃

−Z
′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds

=O
(
x

1
2 +δ+kT−k+1

)
.

(11)

By Theorem 4 and (2), we obtain that for s = σ1 + i T̃ , 1
2

+ δ ≤ σ1 ≤ c,

−Z
′

R (s)

ZR (s)
=
Z
′
(s)

Z (s)
− Z

′
(s+ 1)

Z (s+ 1)

=O
(
δ−1T̃

)
− Z

′
(s+ 1)

Z (s+ 1)
.

Since Z
′
(s+1)

Z(s+1) is bounded for s = σ1 + i T̃ , 1
2 + δ ≤ σ1

≤ c, it follows that

−Z
′

R (s)

ZR (s)
= O

(
δ−1T̃

)
= O

(
δ−1T

)
for s = σ1 + i T̃ , 1

2 + δ ≤ σ1 ≤ c.
Hence,

1

2π i

c+i T̃∫
1
2 +δ+i T̃

−Z
′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds

=O

xc+kT−k−1

c+i T̃∫
1
2 +δ+i T̃

∣∣∣∣∣Z
′

R (s)

ZR (s)

∣∣∣∣∣ |ds|


=O
(
δ−1xc+kT−k

)
.

(12)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 13, 2019

ISSN: 1998-4464 751



Similarly,

1

2π i

1
2 +δ−i T̃∫
c−i T̃

−Z
′

R (s)

ZR (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+kds

=O
(
δ−1xc+kT−k

)
.

(13)

Combining (8)-(13), taking into account (2), the fact that k
≥ 2, and letting T → ∞, we obtain that

ψk (x)

=
∑

z∈A0,k

Ress=z

(
Z
′
(s)

Z (s)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+k

)
−

∑
z∈A1,k

Ress=z

(
Z
′
(s+ 1)

Z (s+ 1)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+k

)
=
∑

z∈A0,k

cz (0, k)−
∑

z∈A1,k

cz (1, k) ,

where Ai,k, i ∈ {0, 1} denotes the set of poles of

Z
′
(s+ i)

Z (s+ i)
s−1 (s+ 1)

−1
... (s+ k)

−1
xs+k,

and

cz (i, k)

= Ress=z

(
Z
′
(s+ i)

Z (s+ i)
×

× s−1 (s+ 1)
−1
... (s+ k)

−1
xs+k

)
.

Putting k = 2, we end up with

ψ2 (x)

=
∑

z∈A0,2

cz (0, 2)−
∑

z∈A1,2

cz (1, 2) . (14)

Note that the equality (14) represents the equality from
Theorem 1

′
in [19, p. 245] for k = 2.

Now, proceeding in exactly the same way as in [19, pp. 245-
246], one obtains the equality from Theorem 2 in [19, p. 245].

Taking into account our notation, the aforementioned equal-
ity may be written in the following, equivalent form

ψ0 (x) =

M∑
n=0

xsn

sn
+O

(
x

3
4

)
,

or

πΓ (x) = li (x) +
M∑
n=1

li (xsn) +O
(
x

3
4 (log x)

−1
)
.

This completes the proof.

V. CONCLUSION

The idea for this research comes from [18], where the
author applied the contour integration over circular bound-
aries. Recently, in [10] and [13], the author derived general
results, which are analogous to the present result, in the case
of compact, even-dimensional and odd-dimensional locally
symmetric Riemannian manifolds of strictly negative sectional
curvature, respectively. For a weighted form of the even-
dimensional result, we refer to [11]. In the future work
the author plans to consider a weighted form as well as a
logarithmic form of the corresponding prime geodesic theorem
in the case of compact symmetric spaces formed as quotients
of the Lie group SL4 (R) (see, [5]).
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[1] M. Avdispahić and Dž. Gušić, ”On the error term in the prime geodesic
theorem,” Bull. Korean Math. Soc., vol. 49, pp. 367–372, 2012.

[2] M. Avdispahić and Dž. Gušić, ”On the length spectrum for compact
locally symmetric spaces of real rank one,” WSEAS Trans. on Math.,
vol. 16, pp. 303–321, 2017.

[3] Y. Cai, ”Prime geodesic theorem,” J. Theor. Nombres Bordeaux, vol. 14,
pp. 59–72, 2002.

[4] D. L. DeGeorge, ”Length spectrum for compact locally symmetric
spaces of strictly negative curvature,” Ann. Sci. Ec. Norm. Sup., vol.
10, pp. 133–152, 1977.

[5] A. Deitmar and M. Pavey, ”A prime geodesic theorem for SL4,” Ann.
Glob. Anal. Geom., vol. 33, pp. 161–205, 2008.

[6] D. Fried, ”The zeta functions of Ruelle and Selberg. I,” Ann. Sci. Ec.
Norm. Sup., vol. 19, pp. 491–517, 1986.

[7] R. Gangolli, ”Zeta functions of Selberg’s type for compact space forms
of symmetric spaces of rank one,” Illinois J. Math., vol. 21, pp. 1–41,
1977.

[8] R. Gangolli, ”The length spectra of some compact manifolds of negative
curvature,” J. Diff. Geom., vol. 12, pp. 403–424, 1977.

[9] R. Gangolli and G. Warner, ”Zeta functions of Selberg’s type for some
noncompact quotients of symmetric spaces of rank one,” Nagoya Math.,
vol. 78, pp. 1–44, 1980.
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